atomki_tandetron_logoatomki_tandetron_logoatomki_tandetron_logoatomki_tandetron_logo
  • Home
  • Tandetron Laboratory
    • About HUN-REN ATOMKI
    • Laboratory
    • Structure
    • Infrastructure
    • Digitization
      • Augmented Reality (AR) application of the ATOMKI Tandetron Laboratory
      • Virtual reality (VR)
    • People
    • Contact
  • Research and development
    • Experiments
    • Directions
    • Publications
      • Periodical publications
      • Professional presentation
      • Educational lecture
      • Thesis, TDK topics
      • Posters
  • Events
  • Hungarian
✕

Bombardment of CO Ice by Cosmic Rays. I. Experimental Insights into the Microphysics of Molecule Destruction and Sputtering

PERIODICAL PUBLICATIONS

A.V. Ivlev, B.M. Giuliano, Z. Juhász, P. Herczku, B. Sulik, D.V. Mifsud, S.T.S. Kovács, K.K. Rahul, R. Rácz, S. Biri, I. Rajta, I. Vajda, N.J. Mason, S. Ioppolo, P. Caselli:
Bombardment of CO Ice by Cosmic Rays. I. Experimental Insights into the Microphysics of Molecule Destruction and Sputtering
Astrophysical Journal 944 (2023) 181

DOI: 10.3847/1538-4357/acb545

Published: 2023 March 9

Abstract

We present a dedicated experimental study of microscopic mechanisms controlling radiolysis and sputtering of astrophysical ices upon bombardment by cosmic-ray ions. Such ions are slowed down owing to inelastic collisions with bound electrons, resulting in ionization and excitation of ice molecules. In experiments on CO ice irradiation, we show that the relative contribution of these two mechanisms of energy loss to molecule destruction and sputtering can be probed by selecting ion energies near the peak of the electronic stopping power. We have observed a significant asymmetry, in both the destruction cross section and the sputtering yield, for pairs of ion energies corresponding to the same values of the stopping power on either side of the peak. This implies that the stopping power does not solely control these processes, as usually assumed in the literature. Our results suggest that electronic excitations represent a significantly more efficient channel for radiolysis and, likely, for sputtering of CO ice. We also show that the charge state of incident ions and the rate for CO+ production in the ice have a negligible effect on these processes.

Back to PERIODICAL PUBLICATIONS page

Search

✕

Recent Posts

  • Cross section measurement of the 12C(p,γ)13N reaction with activation in a wide energy range
  • Bombardment of CO Ice by Cosmic Rays. I. Experimental Insights into the Microphysics of Molecule Destruction and Sputtering
  • Cross section measurement of the 144Sm(α,n)147Gd reaction for studying the α-nucleus optical potential at astrophysical energies
  • Proton and Electron Irradiations of CH4:H2O Mixed Ices
  • Sulfur Ion Implantations Into Condensed CO2: Implications for Europa

Categories

  • Conference
  • Educational lecture
  • GINOP
  • Periodical publication
  • Poster
  • Press events
  • Professional presentation
  • Publication
  • Publicity
  • Theses
Copyright © 2020 Atomki – Minden jog fenntartva!